Exact density functional for hard-rod mixtures derived from Markov chain approach

DC FieldValueLanguage
dc.contributor.authorBakhti, Benaoumeur
dc.contributor.authorSchott, Stephan
dc.contributor.authorMaass, Philipp
dc.date.accessioned2021-12-23T16:03:50Z-
dc.date.available2021-12-23T16:03:50Z-
dc.date.issued2012
dc.identifier.issn15393755
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/6223-
dc.description.abstractUsing a Markov chain approach we rederive the exact density functional for hard-rod mixtures on a one-dimensional lattice, which forms the basis of the lattice fundamental measure theory. The transition probability in the Markov chain depends on a set of occupation numbers, which reflects the property of a zero-dimensional cavity to hold at most one particle. For given mean occupation numbers (density profile), an exact expression for the equilibrium distribution of microstates is obtained, which means an expression for the unique external potential that generates the density profile in equilibrium. By considering the rod ends to fall onto lattice sites, the mixture is always additive.
dc.language.isoen
dc.publisherAMER PHYSICAL SOC
dc.relation.ispartofPHYSICAL REVIEW E
dc.subjectDISORDER
dc.subjectLATTICE-GAS SYSTEMS
dc.subjectPhysics
dc.subjectPhysics, Fluids & Plasmas
dc.subjectPhysics, Mathematical
dc.titleExact density functional for hard-rod mixtures derived from Markov chain approach
dc.typejournal article
dc.identifier.doi10.1103/PhysRevE.85.042107
dc.identifier.isiISI:000303190800006
dc.description.volume85
dc.description.issue4, 1
dc.contributor.orcid0000-0002-1268-8688
dc.contributor.researcheridH-1477-2011
dc.identifier.eissn15502376
dc.publisher.placeONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
dcterms.isPartOf.abbreviationPhys. Rev. E
dcterms.oaStatusGreen Submitted
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidMaPh688-
Show simple item record

Page view(s)

6
Last Week
0
Last month
0
checked on Apr 16, 2024

Google ScholarTM

Check

Altmetric