Cofibrant operads and universal E-infinity operads

DC FieldValueLanguage
dc.contributor.authorVogt, RM
dc.date.accessioned2021-12-23T16:03:53Z-
dc.date.available2021-12-23T16:03:53Z-
dc.date.issued2003
dc.identifier.issn01668641
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/6257-
dc.description.abstractWe introduce various homotopy structures on the category of operads, which shed some light into the homotopy theoretic nature of the barconstruction WB of an operad, the whiskering process for operads and the Sigma-freeness condition. Using the lifting property of cofibrant objects, we construct E-infinity operads A which are universal: any E-infinity-structure lifts to an A-structure, canonically up to homotopy through A-structures. (C) 2003 Elsevier B.V. All rights reserved.
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.relation.ispartofTOPOLOGY AND ITS APPLICATIONS
dc.subjectCATEGORIES
dc.subjectMathematics
dc.subjectMathematics, Applied
dc.subjectSPACES
dc.titleCofibrant operads and universal E-infinity operads
dc.typejournal article
dc.identifier.doi10.1016/S0166-8641(03)00055-5
dc.identifier.isiISI:000184855800005
dc.description.volume133
dc.description.issue1
dc.description.startpage69
dc.description.endpage87
dc.identifier.eissn18793207
dc.publisher.placePO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
dcterms.isPartOf.abbreviationTopology Appl.
dcterms.oaStatusBronze
Show simple item record

Page view(s)

3
Last Week
0
Last month
0
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric