GIGANTIC RANDOM SIMPLICIAL COMPLEXES

DC FieldValueLanguage
dc.contributor.authorGrygierek, Jens
dc.contributor.authorJuhnke-Kubitzke, Martina
dc.contributor.authorReitzner, Matthias
dc.contributor.authorRomer, Tim
dc.contributor.authorRondigs, Oliver
dc.date.accessioned2021-12-23T16:04:19Z-
dc.date.available2021-12-23T16:04:19Z-
dc.date.issued2020
dc.identifier.issn15320073
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/6373-
dc.description.abstractWe provide a random sirnplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that-up to homotopy equivalence-it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
dc.description.sponsorshipDFGGerman Research Foundation (DFG)European Commission; The authors gratefully acknowledge support from the DFG in form of the Research Training Group 1916 ``Combinatorial Structures in Geometry''. We would like to thank the referee for valuable comments.
dc.language.isoen
dc.publisherINT PRESS BOSTON, INC
dc.relation.ispartofHOMOLOGY HOMOTOPY AND APPLICATIONS
dc.subjectBetti numbers
dc.subjectCOUNTS
dc.subjectHOMOLOGICAL CONNECTIVITY
dc.subjectMathematics
dc.subjectMathematics, Applied
dc.subjectPoisson point process
dc.subjectrandom simplicial complex
dc.subjectTOPOLOGY
dc.titleGIGANTIC RANDOM SIMPLICIAL COMPLEXES
dc.typejournal article
dc.identifier.doi10.4310/HHA.2020.v22.n1.a17
dc.identifier.isiISI:000593072900017
dc.description.volume22
dc.description.issue1
dc.description.startpage297
dc.description.endpage318
dc.contributor.orcid0000-0003-3459-5148
dc.identifier.eissn15320081
dc.publisher.placePO BOX 43502, SOMERVILLE, MA 02143 USA
dcterms.isPartOf.abbreviationHomol. Homotopy Appl.
dcterms.oaStatusGreen Submitted
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptidfb06-
crisitem.author.deptidfb06-
crisitem.author.deptidfb06-
crisitem.author.deptidfb06-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidJuMa420-
crisitem.author.netidReMa759-
crisitem.author.netidRoTi119-
crisitem.author.netidRoOl401-
Show simple item record

Page view(s)

1
Last Week
0
Last month
0
checked on Apr 19, 2024

Google ScholarTM

Check

Altmetric