Lattice paths with given number of turns and semimodules over numerical semigroups

DC FieldValueLanguage
dc.contributor.authorMoyano-Fernandez, Julio Jose
dc.contributor.authorUliczka, Jan
dc.date.accessioned2021-12-23T16:04:43Z-
dc.date.available2021-12-23T16:04:43Z-
dc.date.issued2014
dc.identifier.issn00371912
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/6568-
dc.description.abstractLet Gamma = <alpha, beta > be a numerical semigroup. In this article we consider several relations between the so-called Gamma-semimodules and lattice paths from (0, alpha) to (beta, 0): we investigate isomorphism classes of Gamma-semimodules as well as certain subsets of the set of gaps of Gamma, and finally syzygies of Gamma-semimodules. In particular we compute the number of Gamma-semimodules which are isomorphic with their k-th syzygy for some k.
dc.description.sponsorshipSpanish Government Ministerio de Educacion y CienciaSpanish Government [MTM2007-64704]; Ministerio de Economia y CompetitividadSpanish Government [MTM2012-36917-C03-03]; European UnionEuropean Commission; The first author was partially supported by the Spanish Government Ministerio de Educacion y Ciencia, grant MTM2007-64704 and Ministerio de Economia y Competitividad, grant MTM2012-36917-C03-03, in cooperation with the European Union in the framework of the founds ``FEDER''.
dc.language.isoen
dc.publisherSPRINGER
dc.relation.ispartofSEMIGROUP FORUM
dc.subjectFundamental couple
dc.subjectGamma-lean set
dc.subjectGamma-semimodule
dc.subjectLattice path
dc.subjectMathematics
dc.subjectNumerical semigroup
dc.subjectRATIONAL CURVES
dc.subjectSyzygy
dc.titleLattice paths with given number of turns and semimodules over numerical semigroups
dc.typejournal article
dc.identifier.doi10.1007/s00233-013-9559-7
dc.identifier.isiISI:000336737000011
dc.description.volume88
dc.description.issue3
dc.description.startpage631
dc.description.endpage646
dc.contributor.researcheridABG-8112-2020
dc.contributor.researcheridA-4612-2012
dc.identifier.eissn14322137
dc.publisher.place233 SPRING ST, NEW YORK, NY 10013 USA
dcterms.isPartOf.abbreviationSemigr. Forum
dcterms.oaStatusGreen Submitted, Green Published
Show simple item record

Page view(s)

2
Last Week
0
Last month
0
checked on Apr 12, 2024

Google ScholarTM

Check

Altmetric