Heisenberg-Integrable Spin Systems

DC FieldValueLanguage
dc.contributor.authorSteinigeweg, Robin
dc.contributor.authorSchmidt, Heinz-Juergen
dc.date.accessioned2021-12-23T16:04:46Z-
dc.date.available2021-12-23T16:04:46Z-
dc.date.issued2009
dc.identifier.issn13850172
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/6591-
dc.description.abstractWe investigate certain classes of integrable classical or quantum spin systems. The first class is characterized by the recursively defined property P saying that the spin system consists of a single spin or can be decomposed into two uniformly coupled or disjoint subsystems with property P. For these systems the time evolution can be explicitly calculated. The second class consists of spin systems where all non-zero coupling constants have the same strength (spin graphs) possessing N -aEuro parts per thousand 1 independent, commuting constants of motion of Heisenberg type. These systems are shown to have the above property P and can be characterized as spin graphs not containing chains of length four as vertex-induced sub-graphs. We completely enumerate and characterize all spin graphs up to N = 5 spins. Applications to the construction of symplectic numerical integrators for non-integrable spin systems are briefly discussed.
dc.language.isoen
dc.publisherSPRINGER
dc.relation.ispartofMATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY
dc.subjectCLUSTERS
dc.subjectCompletely integrable systems
dc.subjectFRUSTRATION
dc.subjectHeisenberg spin systems
dc.subjectMathematics
dc.subjectMathematics, Applied
dc.subjectPhysics
dc.subjectPhysics, Mathematical
dc.subjectSTAR
dc.titleHeisenberg-Integrable Spin Systems
dc.typejournal article
dc.identifier.doi10.1007/s11040-008-9050-y
dc.identifier.isiISI:000263419300002
dc.description.volume12
dc.description.issue1
dc.description.startpage19
dc.description.endpage45
dc.contributor.orcid0000-0003-0608-0884
dc.contributor.researcheridA-5205-2009
dc.identifier.eissn15729656
dc.publisher.placeVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
dcterms.isPartOf.abbreviationMath. Phys. Anal. Geom.
dcterms.oaStatusGreen Submitted
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0003-0608-0884-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidStRo766-
Show simple item record

Page view(s)

3
Last Week
0
Last month
1
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric