Liquid-Gated Graphene Field-Effect Transistors for Biosensing on Lipid Monolayers

DC ElementWertSprache
dc.contributor.authorFomin, Mykola
dc.contributor.authorJorde, Lara
dc.contributor.authorSteinbach, Florian
dc.contributor.authorYou, Changjiang
dc.contributor.authorMeyer, Carola
dc.date.accessioned2024-01-04T10:30:59Z-
dc.date.available2024-01-04T10:30:59Z-
dc.date.issued2023
dc.identifier.issn0370-1972
dc.identifier.urihttp://osnascholar.ub.uni-osnabrueck.de/handle/unios/72995-
dc.description.abstractThis study presents a comprehensive fabrication process for high-quality graphene field-effect transistors (GFETs) and their characterization. It is demonstrated that the suggested cost-efficient method of fabrication utilizing the direct-laser writing (DLW) system is reliable and ensures lower contact resistance between graphene and metal compared to other works. This improvement results in minimal signal loss and distortion, providing significant benefits to the overall performance of the GFETs. The fabricated devices are functionalized with a lipid monolayer containing tris-nitrilotriacetic acid fused to the lipids for the binding of histidine-tagged proteins. Monomeric enhanced green fluorescent protein (GFP) is used as a model protein to explore the current-voltage characteristics response of the liquid-gated GFETs. The results demonstrate that the devices are well suited for the electrical biosensing of proteins in physiological buffer conditions, paving the way for label-free detection of protein-protein interactions at membranes. This study presents a fabrication process for high-quality graphene field-effect transistors. The fabricated devices are functionalized with a lipid monolayer containing tris-nitrilotriacetic acid fused to the lipids to bind histidine-tagged proteins. The results demonstrate that the devices are well suited for the electrical biosensing of proteins in physiological buffer conditions, paving the way for label-free detection at lipid monolayers.image (c) 2023 WILEY-VCH GmbH
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.; The authors thank Annette Budke-Gieseking for expert technical assistance on protein preparation. This project was supported by intramural funding from Osnabrueck University (Profile line ``Integrated Science'') and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - INST 190/190-1 FUGG.Open Access funding enabled and organized by Projekt DEAL.r Open Access funding enabled and organized by Projekt DEAL.
dc.language.isoen
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.ispartofPHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
dc.subjectBINDING
dc.subjectbiofunctionalization
dc.subjectCONTACT RESISTANCE
dc.subjectDYNAMICS
dc.subjectgraphene field-effect transistors
dc.subjectlabel-free biosensing
dc.subjectmembrane proteins
dc.subjectNOISE
dc.subjectPhysics
dc.subjectPhysics, Condensed Matter
dc.subjectprotein-protein interactions
dc.subjectPROTEINS
dc.subjectSTOICHIOMETRY
dc.subjectTRANSPORT
dc.titleLiquid-Gated Graphene Field-Effect Transistors for Biosensing on Lipid Monolayers
dc.typejournal article
dc.identifier.doi10.1002/pssb.202300324
dc.identifier.isiISI:001092704500001
dc.identifier.eissn1521-3951
dc.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY
dcterms.isPartOf.abbreviationPhys. Status Solidi B-Basic Solid State Phys.
dcterms.oaStatusBronze
local.import.remainsaffiliations : University Osnabruck; University Osnabruck; University Osnabruck
local.import.remainsearlyaccessdate : NOV 2023
local.import.remainsweb-of-science-index : Science Citation Index Expanded (SCI-EXPANDED)
crisitem.author.deptSonderforschungsbereich 944: Physiologie und Dynamik zellulärer Mikrokompartimente-
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidorganisation19-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0002-7839-6397-
crisitem.author.orcid0000-0003-0851-2767-
crisitem.author.parentorgFB 05 - Biologie/Chemie-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.grandparentorgUniversität Osnabrück-
crisitem.author.netidYoCh745-
crisitem.author.netidMeCa197-
Zur Kurzanzeige

Seitenaufrufe

3
Letzte Woche
0
Letzter Monat
0
geprüft am 28.05.2024

Google ScholarTM

Prüfen

Altmetric