Ca2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair

Autor(en): Niekamp, Patrick
Scharte, Felix
Sokoya, Tolulope
Vittadello, Laura
Kim, Yeongho
Deng, Yongqiang
Sudhoff, Elisabeth
Hilderink, Angelika
Imlau, Mirco 
Clarke, Christopher J.
Hensel, Michael 
Burd, Christopher G.
Holthuis, Joost C. M.
Stichwörter: AUTOPHAGY; CELL-MEMBRANE; CERAMIDE; CYTOSOL; DEATH; GOLGI; Multidisciplinary Sciences; PLASMA-MEMBRANE; PROTEIN; Science & Technology - Other Topics; VESICLES
Erscheinungsdatum: 2022
Herausgeber: NATURE PORTFOLIO
Journal: NATURE COMMUNICATIONS
Volumen: 13
Ausgabe: 1
Zusammenfassung: 
Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes. Activation of ESCRT prevents potentially lethal outcomes of minor perturbations in lysosomal integrity. Here authors show that Ca2 -activated scrambling of sphingomyelin and its cytosolic turnover drives lysosomal repair independently of ESCRT.
DOI: 10.1038/s41467-022-29481-4

Zur Langanzeige

Seitenaufrufe

1
Letzte Woche
0
Letzter Monat
0
geprüft am 07.05.2024

Google ScholarTM

Prüfen

Altmetric