Some elliptic traveling wave solutions to the Novikov-Veselov equation

DC FieldValueLanguage
dc.contributor.authorNickel, J.
dc.contributor.authorSerov, V. S.
dc.contributor.authorSchuermann, H. W.
dc.date.accessioned2021-12-23T16:08:42Z-
dc.date.available2021-12-23T16:08:42Z-
dc.date.issued2006
dc.identifier.issn15598985
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/8409-
dc.description.abstractAn approach is proposed to obtain some exact explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NVE[V (x, y, t)] = 0). An expansion ansatz V -> psi = Sigma(2)(j=0) a(j)f(j) is used to reduce the NVE to the ordinary differential equation (f') 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f') 2 = R(f) lead to periodic and solitary wave like solutions V. Subject to certain conditions containing the parameters of the NVE and of the ansatz V.. the periodic solutions V can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme.
dc.language.isoen
dc.publisherE M W PUBLISHING
dc.relation.ispartofPROGRESS IN ELECTROMAGNETICS RESEARCH-PIER
dc.subjectCYCLIC IDENTITIES
dc.subjectEngineering
dc.subjectEngineering, Electrical & Electronic
dc.subjectEVOLUTIONAL EQUATIONS
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectTelecommunications
dc.titleSome elliptic traveling wave solutions to the Novikov-Veselov equation
dc.typejournal article
dc.identifier.doi10.2528/PIER06041202
dc.identifier.isiISI:000239815500017
dc.description.volume61
dc.description.startpage323
dc.description.endpage331
dc.contributor.researcheridAAL-9190-2020
dc.publisher.placePO BOX 425517, KENDALL SQUARE, CAMBRIDGE, MA 02142 USA
dcterms.isPartOf.abbreviationProg. Electromagn. Res.
dcterms.oaStatusBronze
Show simple item record

Page view(s)

2
Last Week
0
Last month
0
checked on Apr 22, 2024

Google ScholarTM

Check

Altmetric