Eighth-order high-temperature expansion for general Heisenberg Hamiltonians

Autor(en): Schmidt, Heinz-Juergen
Lohmann, Andre
Richter, Johannes
Stichwörter: ANTIFERROMAGNET; Materials Science; Materials Science, Multidisciplinary; MODEL; Physics; Physics, Applied; Physics, Condensed Matter; PYROCHLORE; SERIES; SUSCEPTIBILITY; THERMODYNAMICS
Erscheinungsdatum: 2011
Volumen: 84
Ausgabe: 10
We explicitly calculate the moments t(n) of general Heisenberg Hamiltonians up to eighth order. They have the form of finite sums of products of two factors. The first factor is represented by a (multi-) graph that has to be evaluated for each particular system under consideration. The second factors are well-known universal polynomials in the variable s(s 1), where s denotes the individual spin quantum number. From these moments we determine the corresponding coefficients of the high-temperature expansion of the free energy and the zero field susceptibility by a new method. These coefficients can be written in a form that makes explicit their extensive character. Our results represent a general tool to calculate eighth-order high-temperature series for arbitrary Heisenberg models. The results are applied to concrete systems, namely to magnetic molecules with the geometry of the icosidodecahedron, to frustrated square lattices, and to the pyrochlore magnets. By comparison with other methods that have been recently applied to these systems, we find that the typical susceptibility maximum of the spin-s Heisenberg antiferromagnet is well described by the eighth-order high-temperature series.
ISSN: 24699950
DOI: 10.1103/PhysRevB.84.104443

Show full item record

Google ScholarTM