Algebraic properties of ideals of poset homomorphisms

DC FieldValueLanguage
dc.contributor.authorJuhnke-Kubitzke, Martina
dc.contributor.authorKatthaen, Lukas
dc.contributor.authorMadani, Sara Saeedi
dc.date.accessioned2021-12-23T16:09:16Z-
dc.date.available2021-12-23T16:09:16Z-
dc.date.issued2016
dc.identifier.issn09259899
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/8708-
dc.description.abstractGiven finite posets P and Q, we consider a specific ideal L(P, Q), whose minimal monomial generators correspond to order-preserving maps phi : P -> Q. We study algebraic invariants of those ideals. In particular, sharp lower and upper bounds for the Castelnuovo-Mumford regularity and the projective dimension are provided. We obtain precise formulas for a large subclass of these ideals. Moreover, we provide complete characterizations for several algebraic properties of L(P, Q), including being Buchsbaum, Cohen-Macaulay, Gorenstein, Golod and having a linear resolution.
dc.description.sponsorshipGerman Research Council DFGGerman Research Foundation (DFG) [GRK 1916]; Martina Juhnke-Kubitzke and Sara Saeedi Madani were supported by the German Research Council DFG-GRK 1916.
dc.language.isoen
dc.publisherSPRINGER
dc.relation.ispartofJOURNAL OF ALGEBRAIC COMBINATORICS
dc.subjectBetti numbers
dc.subjectGOLOD PROPERTY
dc.subjectLetterplace ideal
dc.subjectMathematics
dc.subjectMonomial ideal
dc.subjectMONOMIAL IDEALS
dc.subjectPoset homomorphism
dc.subjectPRODUCTS
dc.subjectRINGS
dc.titleAlgebraic properties of ideals of poset homomorphisms
dc.typejournal article
dc.identifier.doi10.1007/s10801-016-0687-5
dc.identifier.isiISI:000387223000009
dc.description.volume44
dc.description.issue3
dc.description.startpage757
dc.description.endpage784
dc.contributor.orcid0000-0001-6876-0776
dc.contributor.researcheridAAD-4557-2021
dc.identifier.eissn15729192
dc.publisher.place233 SPRING ST, NEW YORK, NY 10013 USA
dcterms.isPartOf.abbreviationJ. Algebr. Comb.
dcterms.oaStatusGreen Submitted
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptidfb06-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidJuMa420-
Show simple item record

Page view(s)

5
Last Week
0
Last month
0
checked on Apr 16, 2024

Google ScholarTM

Check

Altmetric