Fluorescence Microscopy Assays on Chemically Functionalized Surfaces for Quantitative Imaging of Microtubule, Motor, and plus TIP Dynamics

DC ElementWertSprache
dc.contributor.authorBieling, Peter
dc.contributor.authorTelley, Ivo A.
dc.contributor.authorHentrich, Christian
dc.contributor.authorPiehler, Jacob
dc.contributor.authorSurrey, Thomas
dc.contributor.editorWilson, L
dc.contributor.editorCorreia, JJ
dc.date.accessioned2021-12-23T16:09:29Z-
dc.date.available2021-12-23T16:09:29Z-
dc.date.issued2010
dc.identifier.isbn9780123748157
dc.identifier.issn0091679X
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/8820-
dc.description.abstractMicrotubule cytoskeleton function depends on the dynamic interplay of microtubules and various microtubule-binding proteins. To gain an understanding of cytoskeleton function at the molecular level, it is important to measure quantitatively how cytoskeletal proteins interact with each other in space and time. Here we describe fluorescence microscopy-based in vitro assays on chemically functionalized glass slides for the study of several aspects of microtubule cytoskeleton dynamics: single motor movements, dynamic microtubule plus-end tracking, antiparallel microtubule sliding by microtubule-crosslinking motors, and microtubule gliding by surface-immobilized motors. The combination of a passivating polyethylene glycol layer on the glass with covalently attached functional groups for selective protein capturing ensures excellent control of the surface properties and good preservation of protein activities in these assays. Common to all assays is that they can be performed in the presence of high concentrations of soluble proteins or even cell extract, which in combination with total internal reflection fluorescence microscopy allows the study of complex protein mixtures that were previously not accessible to quantitative imaging in vitro.
dc.language.isoen
dc.publisherELSEVIER ACADEMIC PRESS INC
dc.relation.ispartofMICROTUBULES, IN VITRO: MICROTUBULES, IN VITRO
dc.relation.ispartofMethods in Cell Biology
dc.subjectCell Biology
dc.subjectCYCLE
dc.subjectDYNEIN
dc.subjectEGG EXTRACT SPINDLES
dc.subjectEND TRACKING
dc.subjectHISTIDINE-TAGGED PROTEINS
dc.subjectIN-VITRO
dc.subjectMOTILITY
dc.subjectMOVEMENT
dc.subjectPHOSPHORYLATION
dc.subjectSINGLE KINESIN MOLECULES
dc.titleFluorescence Microscopy Assays on Chemically Functionalized Surfaces for Quantitative Imaging of Microtubule, Motor, and plus TIP Dynamics
dc.typereview
dc.identifier.doi10.1016/S0091-679X(10)95028-0
dc.identifier.isiISI:000278776500028
dc.description.volume95
dc.description.startpage555
dc.description.endpage580
dc.contributor.orcid0000-0001-6697-5001
dc.contributor.orcid0000-0003-4444-1046
dc.contributor.orcid0000-0002-7458-4358
dc.contributor.orcid0000-0001-9082-1870
dc.contributor.researcheridAAC-4608-2021
dc.contributor.researcheridD-2063-2011
dc.publisher.place525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
dcterms.isPartOf.abbreviationMethods Cell Biol.
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.orcid0000-0002-2143-2270-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidPiJa938-
Zur Kurzanzeige

Seitenaufrufe

4
Letzte Woche
0
Letzter Monat
0
geprüft am 08.05.2024

Google ScholarTM

Prüfen

Altmetric