MOTIVIC STRICT RING MODELS FOR K-THEORY

Autor(en): Roendigs, Oliver 
Spitzweck, Markus 
Ostvaer, Paul Arne
Stichwörter: COHOMOLOGY; LANDWEBER EXACTNESS; Mathematics; Mathematics, Applied; MODULES
Erscheinungsdatum: 2010
Herausgeber: AMER MATHEMATICAL SOC
Journal: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 138
Ausgabe: 10
Startseite: 3509
Seitenende: 3520
Zusammenfassung: 
It is shown that the K-theory of every noetherian base scheme of finite Krull dimension is represented by a commutative strict ring object in the setting of motivic stable homotopy theory. The adjective `strict' is used here in order to distinguish between the type of ring structure we construct and one which is valid only up to homotopy. An analogous topological result follows by running the same type of arguments as in the motivic setting.
ISSN: 00029939

Show full item record

Page view(s)

2
Last Week
0
Last month
0
checked on Feb 24, 2024

Google ScholarTM

Check