Slices of hermitian K-theory and Milnor's conjecture on quadratic forms

Autor(en): Rondigs, Oliver 
Ostvaer, Paul Arne
Stichwörter: Mathematics; MODULES; MOTIVIC COHOMOLOGY; PROOF; SEQUENCE; SUSLIN
Erscheinungsdatum: 2016
Herausgeber: GEOMETRY & TOPOLOGY PUBLICATIONS
Journal: GEOMETRY & TOPOLOGY
Volumen: 20
Ausgabe: 2
Startseite: 1157
Seitenende: 1212
Zusammenfassung: 
We advance the understanding of K-theory of quadratic forms by computing the slices of the motivic spectra representing hermitian K-groups and Witt groups. By an explicit computation of the slice spectral sequence for higher Witt theory, we prove Milnor's conjecture relating Galois cohomology to quadratic forms via the filtration of the Witt ring by its fundamental ideal. In a related computation we express hermitian K-groups in terms of motivic cohomology.
ISSN: 14653060
DOI: 10.2140/gt.2016.20.1157

Show full item record

Page view(s)

4
Last Week
0
Last month
0
checked on May 21, 2024

Google ScholarTM

Check

Altmetric