Numerically exact and approximate determination of energy eigenvalues for antiferromagnetic molecules using irreducible tensor operators and general point-group symmetries

Autor(en): Schnalle, Roman
Schnack, Juergen 
Stichwörter: antiferromagnetic materials; eigenvalues and eigenfunctions; Heisenberg model; HEISENBERG-MODEL; MAGNETIC-PROPERTIES; Materials Science; Materials Science, Multidisciplinary; molecular magnetism; NEUTRON-SCATTERING; NUCLEARITY SPIN CLUSTERS; Physics; Physics, Applied; Physics, Condensed Matter; RECOUPLING COEFFICIENTS; RINGS; spin systems; SYSTEMS; TETRAHEDRON; thermodynamics
Erscheinungsdatum: 2009
Herausgeber: AMER PHYSICAL SOC
Journal: PHYSICAL REVIEW B
Volumen: 79
Ausgabe: 10
Zusammenfassung: 
For small-enough quantum systems numerical exact and complete diagonalization of the Hamiltonian enables one to evaluate and discuss all static, dynamic, and thermodynamic properties. In this article we consider Heisenberg spin systems and extend the range of applicability of the exact diagonalization method by showing how the irreducible tensor operator technique can be combined with an unrestricted use of general point-group symmetries. We also present ideas on how to use spin-rotational and point-group symmetries in order to obtain approximate spectra.
ISSN: 24699950
DOI: 10.1103/PhysRevB.79.104419

Show full item record

Google ScholarTM

Check

Altmetric