The Holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode

DC FieldValueLanguage
dc.contributor.authorHaupt, M
dc.contributor.authorBramkamp, M
dc.contributor.authorHeller, M
dc.contributor.authorColes, M
dc.contributor.authorDeckers-Hebestreit, G
dc.contributor.authorHerkenhoff-Hesselmann, B
dc.contributor.authorAltendorf, K
dc.contributor.authorKessler, H
dc.date.accessioned2021-12-23T16:10:08Z-
dc.date.available2021-12-23T16:10:08Z-
dc.date.issued2006
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/9177-
dc.description.abstractP-type ATPases are ubiquitously abundant enzymes involved in active transport of charged residues across biological membranes. The KdpB subunit of the prokaryotic Kdp-ATPase (KdpFABC complex) shares characteristic regions of homology with class II - IV P-type ATPases and has been shown previously to be misgrouped as a class IA P-type ATPase. Here, we present the NMR structure of the AMP-PNP-bound nucleotide binding domain KdpBN of the Escherichia coli Kdp-ATPase at high resolution. The aromatic moiety of the nucleotide is clipped into the binding pocket by Phe(377) and Lys(395) via a pi-pi stacking and a cation-pi interaction, respectively. Charged residues at the outer rim of the binding pocket (Arg(317), Arg(382), Asp(399), and Glu(348)) stabilize and direct the triphosphate group via electrostatic attraction and repulsion toward the phosphorylation domain. The nucleotide binding mode was corroborated by the replacement of critical residues. The conservative mutation F377Y produced a high residual nucleotide binding capacity, whereas replacement by alanine resulted in low nucleotide binding capacities and a considerable loss of ATPase activity. Similarly, mutation K395A resulted in loss of ATPase activity and nucleotide binding affinity, even though the protein was properly folded. We present a schematic model of the nucleotide binding mode that allows for both high selectivity and a low nucleotide binding constant, necessary for the fast and effective turnover rate realized in the reaction cycle of the Kdp-ATPase.
dc.language.isoen
dc.publisherAMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
dc.relation.ispartofJOURNAL OF BIOLOGICAL CHEMISTRY
dc.subjectAMINO-ACID SUBSTITUTIONS
dc.subjectBACKBONE DYNAMICS
dc.subjectBiochemistry & Molecular Biology
dc.subjectCALCIUM-PUMP
dc.subjectCHEMICAL-SHIFT
dc.subjectCRYSTAL-STRUCTURE
dc.subjectKDP-ATPASE
dc.subjectN-DOMAIN
dc.subjectNMR-SPECTROSCOPY
dc.subjectP-TYPE ATPASES
dc.subjectSARCOPLASMIC-RETICULUM CA2+-ATPASE
dc.titleThe Holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode
dc.typejournal article
dc.identifier.doi10.1074/jbc.M508290200
dc.identifier.isiISI:000236404700076
dc.description.volume281
dc.description.issue14
dc.description.startpage9641
dc.description.endpage9649
dc.contributor.researcheridC-1178-2010
dc.identifier.eissn1083351X
dc.publisher.place9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
dcterms.isPartOf.abbreviationJ. Biol. Chem.
dcterms.oaStatushybrid
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.deptidfb05-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidDeGa700-
crisitem.author.netidAlKa770-
Show simple item record

Page view(s)

6
Last Week
0
Last month
1
checked on Apr 19, 2024

Google ScholarTM

Check

Altmetric