Graded algebras with cyclotomic Hilbert series

Autor(en): Borzi, Alessio
D'Ali, Alessio
Stichwörter: Mathematics; Mathematics, Applied
Erscheinungsdatum: 2021
Herausgeber: ELSEVIER
Journal: JOURNAL OF PURE AND APPLIED ALGEBRA
Volumen: 225
Ausgabe: 12
Zusammenfassung: 
Let R be a positively graded algebra over a field k. We say that R is Hilbertcyclotomic if the numerator of its reduced Hilbert series has all of its roots on the unit circle. Such rings arise naturally in commutative algebra, numerical semigroup theory and Ehrhart theory. If R is standard graded, we prove that, under the additional hypothesis that R is Koszul or has an irreducible h-polynomial, Hilbertcyclotomic algebras coincide with complete intersections. In the Koszul case, this is a consequence of some classical results about the vanishing of deviations of a graded algebra. (c) 2021 Elsevier B.V. All rights reserved.
ISSN: 00224049
DOI: 10.1016/j.jpaa.2021.106764

Show full item record

Google ScholarTM

Check

Altmetric