A RANDOMIZED MULTIVARIATE MATRIX PENCIL METHOD FOR SUPERRESOLUTION MICROSCOPY

Autor(en): Ehler, Martin
Kunis, Stefan 
Peter, Thomas
Richter, Christian
Stichwörter: exponential sum; EXPONENTIAL-SUMS; frequency analysis; Mathematics; Mathematics, Applied; moment problem; PARAMETER-ESTIMATION; PRONYS METHOD; spectral analysis; superresolution
Erscheinungsdatum: 2019
Herausgeber: KENT STATE UNIVERSITY
Journal: ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS
Volumen: 51
Startseite: 63
Seitenende: 74
Zusammenfassung: 
The matrix pencil method is an eigenvalue-based approach for the parameter identification of sparse exponential sums. We derive a reconstruction algorithm for multivariate exponential sums that is based on simultaneous diagonalization. Randomization is used and quantified to reduce the simultaneous diagonalization to the eigendecomposition of a single random matrix. To verify feasibility, the algorithm is applied to synthetic and experimental fluorescence microscopy data.
ISSN: 10689613
DOI: 10.1553/etna_vol51s63

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Mar 1, 2024

Google ScholarTM

Check

Altmetric