The symmetric signature

Autor(en): Brenner, Holger 
Caminata, Alessio
Stichwörter: ADE singularities; BUNDLES; CHARACTERISTIC-P; COHEN-MACAULAY MODULES; ELLIPTIC-CURVES; F-SIGNATURE; free resolutions; HILBERT-KUNZ MULTIPLICITY; Kahler differentials; LOCAL-RINGS; Mathematics
Erscheinungsdatum: 2017
Herausgeber: TAYLOR & FRANCIS INC
Journal: COMMUNICATIONS IN ALGEBRA
Volumen: 45
Ausgabe: 9
Startseite: 3730
Seitenende: 3756
Zusammenfassung: 
We define two related invariants for a d-dimensional local ring (R, m, k) called syzygy and differential symmetric signature by looking at the maximal free splitting of reflexive symmetric powers of two modules: the top-dimensional syzygy module Syz(r)(d)(k) of the residue field and the module of Kahler differentials Omega(R/k) of R over k. We compute these invariants for two-dimensional ADE singularities obtaining 1/vertical bar G vertical bar, where vertical bar G vertical bar is the order of the acting group, and for cones over elliptic curves obtaining 0 for the differential symmetric signature. These values coincide with the F-signature of such rings in positive characteristic.
ISSN: 00927872
DOI: 10.1080/00927872.2016.1245313

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Feb 21, 2024

Google ScholarTM

Check

Altmetric