Dynamics of bioenergetic microcompartments

DC FieldValueLanguage
dc.contributor.authorBusch, Karin B.
dc.contributor.authorDeckers-Hebestreit, Gabriele
dc.contributor.authorHanke, Guy T.
dc.contributor.authorMulkidjanian, Armen Y.
dc.date.accessioned2021-12-23T16:11:02Z-
dc.date.available2021-12-23T16:11:02Z-
dc.date.issued2013
dc.identifier.issn14316730
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/9502-
dc.description.abstractThe vast majority of life on earth is dependent on harvesting electrochemical potentials over membranes for the synthesis of ATP. Generation of membrane potential often relies on electron transport through membrane protein complexes, which vary among the bioenergetic membranes found in living organisms. In order to maximize the efficient harvesting of the electrochemical potential, energy loss must be minimized, and this is achieved partly by restricting certain events to specific microcompartments, on bioenergetic membranes. In this review we will describe the characteristics of the energy-converting supramolecular structures involved in oxidative phosphorylation in mitochondria and bacteria, and photophosphorylation. Efficient function of electron transfer pathways requires regulation of electron flow, and we will also discuss how this is partly achieved through dynamic re-compartmentation of the membrane complexes into different supercomplexes. In addition to supercomplexes, the supramolecular structure of the membrane, and in particular the role of water layers on the surface of the membrane in the prevention of wasteful proton escape (and therefore energy loss), is discussed in detail. In summary, the restriction of energetic processes to specific microcompartments on bioenergetic membranes minimizes energy loss, and dynamic rearrangement of these structures allows for regulation.
dc.description.sponsorshipDeutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [Bu2288/1-1, 436 RUS 113]; [SFB 944]; We thank C. W. Mullineaux (London, UK) for kindly providing the microscopy image confirming the clustered distribution of Synechococcus sp. under low light. K. B. was supported by a grant from the Deutsche Forschungsgemeinschaft (Bu2288/1-1). All authors' labs are supported within the framework of SFB 944. A. M. was supported by the DFG 436 RUS 113 grant.
dc.language.isoen
dc.publisherWALTER DE GRUYTER GMBH
dc.relation.ispartofBIOLOGICAL CHEMISTRY
dc.subjectAEROBIC RESPIRATORY SYSTEM
dc.subjectATP SYNTHASE
dc.subjectbacterial bioenergetics
dc.subjectBiochemistry & Molecular Biology
dc.subjectchloroplast
dc.subjectCYCLIC ELECTRON FLOW
dc.subjectCYTOCHROME-C-OXIDASE
dc.subjectESCHERICHIA-COLI
dc.subjectmicrocompartment
dc.subjectmitochondria
dc.subjectOXIDASE SUPER-COMPLEX
dc.subjectOXPHOS
dc.subjectphotosynthetic electron transfer
dc.subjectPHOTOSYSTEM-II
dc.subjectproton motive force
dc.subjectRHODOBACTER-SPHAEROIDES
dc.subjectSTATE TRANSITIONS
dc.subjectsupercomplex
dc.subjectTHYLAKOID MEMBRANES
dc.titleDynamics of bioenergetic microcompartments
dc.typereview
dc.identifier.doi10.1515/hsz-2012-0254
dc.identifier.isiISI:000313522800003
dc.description.volume394
dc.description.issue2
dc.description.startpage163
dc.description.endpage188
dc.contributor.orcid0000-0001-5844-3064
dc.contributor.orcid0000-0003-0525-0191
dc.contributor.researcheridJ-8086-2013
dc.contributor.researcheridAAM-8374-2021
dc.contributor.researcheridABH-8594-2020
dc.contributor.researcheridAAH-3608-2021
dc.identifier.eissn14374315
dc.publisher.placeGENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
dcterms.isPartOf.abbreviationBiol. Chem.
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.deptidfb05-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidDeGa700-
crisitem.author.netidHaGu059-
Show simple item record

Page view(s)

2
Last Week
0
Last month
1
checked on Apr 16, 2024

Google ScholarTM

Check

Altmetric