Ergodicity of quantum cellular automata

DC FieldValueLanguage
dc.contributor.authorRichter, S
dc.contributor.authorWerner, RF
dc.date.accessioned2021-12-23T16:11:08Z-
dc.date.available2021-12-23T16:11:08Z-
dc.date.issued1996
dc.identifier.issn00224715
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/9544-
dc.description.abstractWe define a class of dynamical maps on the quasi-local algebra of a quantum spin system, which are quantum analoges of probabilistic cellular automata. We develop criteria for such a system to be ergodic, i.e., to possess a unique invariant state. Intuitively, ergodicity obtains if the local transition operators exhibit sufficiently large disorder. The ergodicity criteria also imply bounds for the exponential decay of correlations in the unique invariant state. The main technical tool is a quantum version of oscillation norms, defined in the classical case as the sum over all sites of the variations of an observable with respect to local spin flips.
dc.language.isoen
dc.publisherPLENUM PUBL CORP
dc.relation.ispartofJOURNAL OF STATISTICAL PHYSICS
dc.subjectapproach to equilibrium
dc.subjectcellular automata
dc.subjectinteracting particle systems
dc.subjectoscillation norm
dc.subjectPhysics
dc.subjectPhysics, Mathematical
dc.subjectquantum spin systems
dc.titleErgodicity of quantum cellular automata
dc.typejournal article
dc.identifier.doi10.1007/BF02179798
dc.identifier.isiISI:A1996TU41500011
dc.description.volume82
dc.description.issue3-4
dc.description.startpage963
dc.description.endpage998
dc.contributor.orcid0000-0003-2288-468X
dc.contributor.researcheridC-1123-2009
dc.publisher.place233 SPRING ST, NEW YORK, NY 10013
dcterms.isPartOf.abbreviationJ. Stat. Phys.
dcterms.oaStatusGreen Submitted
Show simple item record

Page view(s)

1
Last Week
0
Last month
0
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric