Bayesian reverse-engineering considered as a research strategy for cognitive science

Autor(en): Zednik, Carlos
Jaekel, Frank
Stichwörter: BRAINS; CATEGORIZATION; CONNECTIONIST; DISCOVERY; History & Philosophy Of Science; Ideal observers; INFERENCE; Levels of analysis; PERCEPTION; Philosophy; Probabilistic modeling; PROBABILISTIC MODELS; Rational analysis; REPRESENTATIONS; Reverse-engineering; Scientific explanation; STATISTICS; UNCERTAINTY
Erscheinungsdatum: 2016
Herausgeber: SPRINGER
Journal: SYNTHESE
Volumen: 193
Ausgabe: 12, SI
Startseite: 3951
Seitenende: 3985
Zusammenfassung: 
Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and are often deployed unsystematically, Bayesian reverse-engineering avoids several important worries that have been raised about the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of analysis are being ignored altogether; the challenge that the mathematical models being developed are unfalsifiable; and the charge that the terms `optimal' and `rational' have lost their customary normative force. But while Bayesian reverse-engineering is therefore a viable and productive research strategy, it is also no fool-proof recipe for explanatory success.
ISSN: 00397857
DOI: 10.1007/s11229-016-1180-3

Show full item record

Page view(s)

3
Last Week
0
Last month
0
checked on Feb 23, 2024

Google ScholarTM

Check

Altmetric