THE STANLEY DEPTH IN THE UPPER HALF OF THE KOSZUL COMPLEX

DC FieldValueLanguage
dc.contributor.authorKatthaen, Lukas
dc.contributor.authorSieg, Richard
dc.date.accessioned2021-12-23T16:11:13Z-
dc.date.available2021-12-23T16:11:13Z-
dc.date.issued2016
dc.identifier.issn00927872
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/9586-
dc.description.abstractLet R=K[X-1, ..., X-n] be a polynomial ring over some field K. In this article, we prove that the kth syzygy module of the residue class field K of R has Stanley depth n-1 for left perpendicularn/2right perpendicular <= k<n, as it had been conjectured by Bruns et al.in 2010. In particular, this gives the Stanley depth for a whole family of modules whose graded components have dimension greater than 1. So far, the Stanley depth is known only for a few examples of this type. Our proof consists in a close analysis of a matching in the Boolean algebra.
dc.description.sponsorshipGerman Research Council DFGGerman Research Foundation (DFG) [GRK 1916]; Both authors were partially supported by the German Research Council DFG-GRK 1916.
dc.language.isoen
dc.publisherTAYLOR & FRANCIS INC
dc.relation.ispartofCOMMUNICATIONS IN ALGEBRA
dc.subjectBoolean algebra
dc.subjectHilbert depth
dc.subjectKoszul complex
dc.subjectMathematics
dc.subjectStanley depth
dc.titleTHE STANLEY DEPTH IN THE UPPER HALF OF THE KOSZUL COMPLEX
dc.typejournal article
dc.identifier.doi10.1080/00927872.2015.1085993
dc.identifier.isiISI:000375473300007
dc.description.volume44
dc.description.issue8
dc.description.startpage3290
dc.description.endpage3300
dc.identifier.eissn15324125
dc.publisher.place530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
dcterms.isPartOf.abbreviationCommun. Algebr.
dcterms.oaStatusGreen Submitted
Show simple item record

Page view(s)

1
Last Week
0
Last month
0
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric