Determining cantilever stiffness from thermal noise

DC ElementWertSprache
dc.contributor.authorLuebbe, Jannis
dc.contributor.authorTemmen, Matthias
dc.contributor.authorRahe, Philipp
dc.contributor.authorKuehnle, Angelika
dc.contributor.authorReichling, Michael
dc.date.accessioned2021-12-23T16:11:14Z-
dc.date.available2021-12-23T16:11:14Z-
dc.date.issued2013
dc.identifier.issn21904286
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/9597-
dc.description.abstractWe critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f(n), quality factor Q(n) and specifically the stiffness k(n) of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.
dc.description.sponsorshipHans-Muhlenhoff-Stiftung; The authors gratefully acknowledge experimental support from Stefan Kuhn (Johannes Gutenberg-Universitat Mainz). This project has been generously supported by Nanoworld Services GmbH. M. T. gratefully appreciates support from the Hans-Muhlenhoff-Stiftung. P. R. gratefully acknowledges financial support from the Alexander von Humboldt-Foundation.
dc.language.isoen
dc.publisherBEILSTEIN-INSTITUT
dc.relation.ispartofBEILSTEIN JOURNAL OF NANOTECHNOLOGY
dc.subjectAFM
dc.subjectAGITATION
dc.subjectATOMIC-FORCE MICROSCOPY
dc.subjectcantilever
dc.subjectCONDUCTORS
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectNanoscience & Nanotechnology
dc.subjectnoncontact atomic force microscopy (NC-AFM)
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectQ-factor
dc.subjectresonance
dc.subjectScience & Technology - Other Topics
dc.subjectspectral analysis
dc.subjectstiffness
dc.subjectthermal excitation
dc.titleDetermining cantilever stiffness from thermal noise
dc.typejournal article
dc.identifier.doi10.3762/bjnano.4.23
dc.identifier.isiISI:000316799900001
dc.description.volume4
dc.description.startpage227
dc.description.endpage233
dc.contributor.orcid0000-0003-3186-9000
dc.contributor.orcid0000-0002-2768-8381
dc.contributor.researcheridB-1123-2011
dc.contributor.researcheridC-5080-2011
dc.contributor.researcheridE-8038-2011
dc.publisher.placeTRAKEHNER STRASSE 7-9, FRANKFURT AM MAIN, 60487, GERMANY
dcterms.isPartOf.abbreviationBeilstein J. Nanotechnol.
dcterms.oaStatusgold, Green Published
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0002-2768-8381-
crisitem.author.orcid0000-0003-3186-9000-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidRaPh610-
crisitem.author.netidReMi818-
Zur Kurzanzeige

Seitenaufrufe

1
Letzte Woche
0
Letzter Monat
0
geprüft am 01.06.2024

Google ScholarTM

Prüfen

Altmetric