Normal Behaviour Models for Wind Turbine Vibrations: Comparison of Neural Networks and a Stochastic Approach

Autor(en): Lind, Pedro G.
Vera-Tudela, Luis
Waehter, Matthias
Kuehn, Martin
Peinke, Joachim
Stichwörter: condition monitoring; Energy & Fuels; neural networks; signal reconstruction; stochastic modelling; SYSTEMS; tower acceleration; wind turbine
Erscheinungsdatum: 2017
Herausgeber: MDPI
Journal: ENERGIES
Volumen: 10
Ausgabe: 12
Zusammenfassung: 
To monitor wind turbine vibrations, normal behaviour models are built to predict tower top accelerations and drive-train vibrations. Signal deviations from model prediction are labelled as anomalies and are further investigated. In this paper we assess a stochastic approach to reconstruct the 1 Hz tower top acceleration signal, which was measured in a wind turbine located at the wind farm Alpha Ventus in the German North Sea. We compare the resulting data reconstruction with that of a model based on a neural network, which has been previously reported as a data-mining algorithm suitable for reconstructing this signal. Our results present evidence that the stochastic approach outperforms the neural network in the high frequency domain (1 Hz). Although neural network retrieves accurate step-forward predictions, with low mean square errors, the stochastic approach predictions better preserve the statistics and the frequency components of the original signal, retaining high accuracy levels. The implementation of our stochastic approach is available as open source code and can easily be adapted for other situations involving stochastic data reconstruction. Based on our findings we argue that such an approach could be implemented in signal reconstruction for monitoring purposes or for abnormal behaviour detection.
DOI: 10.3390/en10121944

Show full item record

Google ScholarTM

Check

Altmetric