ON DEEP FROBENIUS DESCENT AND FLAT BUNDLES

Autor(en): Brenner, Holger 
Kaid, Almar
Stichwörter: CURVES; finite field; flat vector bundle; Frobenius descent; Frobenius morphism; HILBERT-KUNZ FUNCTION; Hilbert-Kunz multiplicity; Mathematics; relative curve; semistable vector bundle; VECTOR-BUNDLES
Erscheinungsdatum: 2008
Herausgeber: INT PRESS BOSTON, INC
Journal: MATHEMATICAL RESEARCH LETTERS
Volumen: 15
Ausgabe: 5-6
Startseite: 1101
Seitenende: 1115
Zusammenfassung: 
Let R be an integral domain of finite type over z and let f : X -> Spec R be a smooth projective morphism of relative dimension d >= 1. We investigate, for a vector bundle E on the total space X, under what arithmetical properties of a sequence (p(n), e(n))(n is an element of N), consisting of closed points p(n) in Spec R and Frobenius descent data epsilon(pn) congruent to F-en*(F) on the closed fibers X-pn the bundle epsilon(0) on the generic fiber X-0 is semistable.
ISSN: 10732780

Show full item record

Page view(s)

5
Last Week
0
Last month
1
checked on Feb 26, 2024

Google ScholarTM

Check