| Erscheinungsdatum | Titel | Autor(en) |
1 | 2019 | On Negatively Dependent Sampling Schemes, Variance Reduction, and Probabilistic Upper Discrepancy Bounds. | Gnewuch, Michael ; Wnuk, Marcin; Hebbinghaus, Nils |
2 | 2019 | Explicit error bounds for randomized Smolyak algorithms and an application to infinite-dimensional integration | Gnewuch, Michael ; Wnuk, Marcin |
3 | 2019 | Note on Pairwise Negative Dependence of Randomized Rank-1 Lattices | Wnuk, Marcin; Gnewuch, Michael |
4 | 2020 | Note on pairwise negative dependence of randomly shifted and jittered rank-1 lattices | Wnuk, Marcin; Gnewuch, Michael |
5 | 2020 | A Generalized Faulhaber Inequality, Improved Bracketing Covers, and Applications to Discrepancy | Gnewuch, Michael ; Pasing, Hendrik; Weiß, Christian |
6 | 2020 | Explicit error bounds for randomized Smolyak algorithms and an application to infinite-dimensional integration | Gnewuch, M. ; Wnuk, M. |
7 | 2020 | Explicit error bounds for randomized Smolyak algorithms and an application to infinite-dimensional integration | Gnewuch, Michael ; Wnuk, Marcin |
8 | 2021 | Discrepancy Bounds for a Class of Negatively Dependent Random Points Including Latin Hypercube Samples | Gnewuch, Michael ; Hebbinghaus, Nils |
9 | 2021 | A GENERALIZED FAULHABER INEQUALITY, IMPROVED BRACKETING COVERS, AND APPLICATIONS TO DISCREPANCY | Gnewuch, Michael ; Pasing, Hendrik; Weiss, Christian |
10 | 2021 | DISCREPANCY BOUNDS FOR A CLASS OF NEGATIVELY DEPENDENT RANDOM POINTS INCLUDING LATIN HYPERCUBE SAMPLES | Gnewuch, Michael ; Hebbinghaus, Nils |
11 | 2021 | On negative dependence properties of Latin hypercube samples and scrambled nets | Doerr, Benjamin; Gnewuch, Michael |
12 | 2021 | Discrepancy bounds for a class of negatively dependent random points including Latin hypercube samples | Gnewuch, Michael ; Hebbinghaus, Nils |
13 | 2021 | Randomized sparse grid algorithms for multivariate integration on Haar wavelet spaces | Wnuk, M.; Gnewuch, M. |
14 | 2022 | Countable tensor products of Hermite spaces and spaces of Gaussian kernels ? | Gnewuch, M. ; Hefter, M.; Hinrichs, A.; Ritter, K. |