ON CANONICAL MODULES OF TORIC FACE RINGS

Autor(en): Ichim, Bogdan
Roemer, Tim 
Stichwörter: COHEN-MACAULAY QUOTIENTS; Mathematics; POSETS; SHELLABLE NONPURE COMPLEXES
Erscheinungsdatum: 2009
Herausgeber: DUKE UNIV PRESS
Journal: NAGOYA MATHEMATICAL JOURNAL
Volumen: 194
Startseite: 69
Seitenende: 90
Zusammenfassung: 
Generalizing the concepts of Stanley-Reisner and affine monoid algebras, one can associate to a rational pointed fan Sigma in R-n the Z(d)-graded toric face ring K[Sigma]. Assuming that K[Sigma] is Cohen-Macaulay, the main result of this paper is to characterize the situation when its canonical module is isomorphic to a Z(d)-graded ideal of K[Sigma]. From this, result several algebraic and combinatorial consequences axe deduced. As an application, we give a relation between the cleanness of K[Sigma] and the shellability of Sigma.
ISSN: 00277630
DOI: 10.1017/S0027763000009636

Show full item record

Page view(s)

2
Last Week
0
Last month
1
checked on Feb 22, 2024

Google ScholarTM

Check

Altmetric