An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment

Autor(en): Vox, Jan P.
Weber, Anika
Wolf, Karen Insa
Izdebski, Krzysztof
Schueler, Thomas
Koenig, Peter 
Wallhoff, Frank
Friemert, Daniel
Stichwörter: ACCURACY; Chemistry; Chemistry, Analytical; Engineering; Engineering, Electrical & Electronic; ergonomic risk assessment; HTC Vive; Instruments & Instrumentation; joint angles; lighthouse technology; motion capture; MUSCULOSKELETAL DISORDERS; Qualisys Oqus; REPEATABILITY; system comparison; virtual reality
Erscheinungsdatum: 2021
Herausgeber: MDPI
Journal: SENSORS
Volumen: 21
Ausgabe: 9
Zusammenfassung: 
The reproduction and simulation of workplaces, and the analysis of body postures during work processes, are parts of ergonomic risk assessments. A commercial virtual reality (VR) system offers the possibility to model complex work scenarios as virtual mock-ups and to evaluate their ergonomic designs by analyzing motion behavior while performing work processes. In this study a VR tracking sensor system (HTC Vive tracker) combined with an inverse kinematic model (Final IK) was compared with a marker-based optical motion capture system (Qualisys). Marker-based optical motion capture systems are considered the gold standard for motion analysis. Therefore, Qualisys was used as the ground truth in this study. The research question to be answered was how accurately the HTC Vive System combined with Final IK can measure joint angles used for ergonomic evaluation. Twenty-six subjects were observed simultaneously with both tracking systems while performing 20 defined movements. Sixteen joint angles were analyzed. Joint angle deviations between /- 6 degrees and /- 42 degrees were identified. These high deviations must be considered in ergonomic risk assessments when using a VR system. The results show that commercial low-budget tracking systems have the potential to map joint angles. Nevertheless, substantial weaknesses and inaccuracies in some body regions must be taken into account. Recommendations are provided to improve tracking accuracy and avoid systematic errors.
DOI: 10.3390/s21093145

Zur Langanzeige

Seitenaufrufe

3
Letzte Woche
0
Letzter Monat
1
geprüft am 16.05.2024

Google ScholarTM

Prüfen

Altmetric