BASIC CONSTRUCTIONS IN THE K-THEORY OF HOMOTOPY RING SPACES

Autor(en): SCHWANZL, R
VOGT, RM
Stichwörter: CATEGORIES; GAMMA-SPACES; Mathematics
Erscheinungsdatum: 1994
Herausgeber: AMER MATHEMATICAL SOC
Journal: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 341
Ausgabe: 2
Startseite: 549
Seitenende: 584
Zusammenfassung: 
Using the language of category theory and universal algebra we formalize the passage from the permutative category of finitely generated free R-modules to the algebraic K-theory KR of R and thus make it applicable to homotopy ring spaces. As applications we construct a Waldhausen type of algebraic K-theory for arbitrary homotopy ring spaces, show its equivalence with constructions of May and Steiner prove its Morita invariance and show that the algebraic K-theory KX of an E(infinity) ring X is itself an E(infinity) ring. Finally we investigate the monomial map Q(BX+*) --> KX.
ISSN: 00029947
DOI: 10.2307/2154572

Show full item record

Google ScholarTM

Check

Altmetric