Understanding interferometry for micro-cantilever displacement detection

Autor(en): von Schmidsfeld, Alexander
Noerenberg, Tobias
Temmen, Matthias
Reichling, Michael 
Stichwörter: ATOMIC-RESOLUTION; displacement noise spectral density; interferometer; Materials Science; Materials Science, Multidisciplinary; MECHANICS; Nanoscience & Nanotechnology; non-contact atomic force microscope (NC-AFM); opto-mechanic effects; Physics; Physics, Applied; SCANNING FORCE MICROSCOPE; Science & Technology - Other Topics; THERMAL NOISE; ULTRAHIGH-VACUUM
Erscheinungsdatum: 2016
Herausgeber: BEILSTEIN-INSTITUT
Journal: BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Volumen: 7
Startseite: 841
Seitenende: 851
Zusammenfassung: 
Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry-Perot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber-cantilever configurations. In the Fabry-Perot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz(0.5) under optimum conditions.
ISSN: 21904286
DOI: 10.3762/bjnano.7.76

Show full item record

Google ScholarTM

Check

Altmetric