GIGANTIC RANDOM SIMPLICIAL COMPLEXES

Autor(en): Grygierek, Jens
Juhnke-Kubitzke, Martina 
Reitzner, Matthias 
Romer, Tim 
Rondigs, Oliver 
Stichwörter: Betti numbers; COUNTS; HOMOLOGICAL CONNECTIVITY; Mathematics; Mathematics, Applied; Poisson point process; random simplicial complex; TOPOLOGY
Erscheinungsdatum: 2020
Herausgeber: INT PRESS BOSTON, INC
Journal: HOMOLOGY HOMOTOPY AND APPLICATIONS
Volumen: 22
Ausgabe: 1
Startseite: 297
Seitenende: 318
Zusammenfassung: 
We provide a random sirnplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that-up to homotopy equivalence-it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
ISSN: 15320073
DOI: 10.4310/HHA.2020.v22.n1.a17

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Feb 23, 2024

Google ScholarTM

Check

Altmetric