Phenolic Resin Dual-Use Stamps for Capillary Stamping and Decal Transfer Printing

Autor(en): Guo, Leiming
Klein, Jonas
Thien, Jannis
Philippi, Michael
Haase, Markus 
Wollschlaeger, Joachim 
Steinhart, Martin 
Stichwörter: CRYSTAL MICROBALANCE SENSOR; decal transfer printing; FILMS; Materials Science; Materials Science, Multidisciplinary; MECHANICAL-PROPERTIES; MESOPOROUS CARBON; microcontact printing; Nanoscience & Nanotechnology; phenolic resin; POLYMERS; porous materials; quartz crystal microbalance; Science & Technology - Other Topics; SILICON; SURFACES; TRANSFER LITHOGRAPHY
Erscheinungsdatum: 2021
Herausgeber: AMER CHEMICAL SOC
Journal: ACS APPLIED MATERIALS & INTERFACES
Volumen: 13
Ausgabe: 41
Startseite: 49567
Seitenende: 49579
Zusammenfassung: 
We report an optimized two-step thermopolymerization process carried out in contact with micropatterned molds that yields porous phenolic resin dual-use stamps with topographically micropatterned contact surfaces. With these stamps, two different parallel additive substrate manufacturing methods can be executed: capillary stamping and decal transfer microlithography. Under moderate contact pressures, the porous phenolic resin stamps are used for nondestructive ink transfer to substrates by capillary stamping. Continuous ink supply through the pore systems to the contact surfaces of the porous phenolic resin stamps enables multiple successive stamp-substrate contacts for lithographic ink deposition under ambient conditions. No deterioration of the quality of the deposited pattern occurs, and no interruptions for ink replenishment are required. Under a high contact pressure, porous phenolic resin stamps are used for decal transfer printing. In this way, the tips of the stamps' contact elements are lithographically transferred to counterpart substrates. The granular nature of the phenolic resin facilitates the rupture of the contact elements upon stamp retraction. The deposited phenolic resin micropatterns characterized by abundance of exposed hydroxyl groups are used as generic anchoring sites for further application-specific functionalizations. As an example, we deposited phenolic resin micropatterns on quartz crystal microbalance resonators and further functionalized them with polyethylenimine for preconcentration sensing of humidity and gaseous formic acid. We envision that also preconcentration coatings for other sensing methods, such as attenuated total reflection infrared spectroscopy and surface plasmon resonance spectroscopy, are accessible by this functionalization algorithm.
ISSN: 19448244
DOI: 10.1021/acsami.1c17904

Show full item record

Page view(s)

2
Last Week
0
Last month
0
checked on May 17, 2024

Google ScholarTM

Check

Altmetric